Neurophysiologic markers in laryngeal muscles indicate functional anatomy of laryngeal primary motor cortex and premotor cortex in the caudal opercular part of inferior frontal gyrus.

نویسندگان

  • Vedran Deletis
  • Maja Rogić
  • Isabel Fernández-Conejero
  • Andreu Gabarrós
  • Ana Jerončić
چکیده

OBJECTIVE The aim of this study was to identify neurophysiologic markers generated by primary motor and premotor cortex for laryngeal muscles, recorded from laryngeal muscle. METHODS Ten right-handed healthy subjects underwent navigated transcranial magnetic stimulation (nTMS) and 18 patients underwent direct cortical stimulation (DCS) over the left hemisphere, while recording neurophysiologic markers, short latency response (SLR) and long latency response (LLR) from cricothyroid muscle. Both healthy subjects and patients were engaged in the visual object-naming task. In healthy subjects, the stimulation was time-locked at 10-300 ms after picture presentation while in the patients it was at zero time. RESULTS The latency of SLR in healthy subjects was 12.66 ± 1.09 ms and in patients 12.67 ± 1.23 ms. The latency of LLR in healthy subjects was 58.5 ± 5.9 ms, while in patients 54.25 ± 3.69 ms. SLR elicited by the stimulation of M1 for laryngeal muscles corresponded to induced dysarthria, while LLR elicited by stimulation of the premotor cortex in the caudal opercular part of inferior frontal gyrus, recorded from laryngeal muscle, corresponded to speech arrest in patients and speech arrest and/or language disturbances in healthy subjects. CONCLUSION In both groups, SLR indicated location of M1 for laryngeal muscles, and LLR location of premotor cortex in the caudal opercular part of inferior frontal gyrus, recorded from laryngeal muscle, while stimulation of these areas in the dominant hemisphere induced transient speech disruptions. SIGNIFICANCE Described methodology can be used in preoperative mapping, and it is expected to facilitate surgical planning and intraoperative mapping, preserving these areas from injuries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motor functions of the Broca's region.

Broca's region in the dominant cerebral hemisphere is known to mediate the production of language but also contributes to comprehension. This region evolved only in humans and is constituted of Brodmann's areas 44 and 45 in the inferior frontal gyrus. There is, however, evidence that Broca's region overlaps, at least in part, with the ventral premotor cortex. We summarize the evidence that the ...

متن کامل

Differential reorganization of three syntax-related networks induced by a left frontal glioma.

The opercular/triangular parts of the left inferior frontal gyrus and the left lateral premotor cortex are critical in syntactic processing. We have recently indicated that a glioma in one of these regions is sufficient to cause agrammatic comprehension. In the present study, we aimed to show how normally existing syntax-related networks are functionally reorganized by a lesion. Twenty-one pati...

متن کامل

The role of ventral premotor cortex in action execution and action understanding.

The human ventral premotor cortex overlaps, at least in part, with Broca's region in the dominant cerebral hemisphere, that is known to mediate the production of language and contributes to language comprehension. This region is constituted of Brodmann's areas 44 and 45 in the inferior frontal gyrus. We summarize the evidence that the motor related part of Broca's region is localized in the ope...

متن کامل

What's special about task in dystonia? A voxel-based morphometry and diffusion weighted imaging study.

Numerous brain imaging studies have demonstrated structural changes in the basal ganglia, thalamus, sensorimotor cortex, and cerebellum across different forms of primary dystonia. However, our understanding of brain abnormalities contributing to the clinically well-described phenomenon of task specificity in dystonia remained limited. We used high-resolution magnetic resonance imaging (MRI) wit...

متن کامل

Neural correlates of the spontaneous phase transition during bimanual coordination.

Repetitive bimanual finger-tapping movements tend toward mirror symmetry: There is a spontaneous transition from less stable asymmetrical movement patterns to more stable symmetrical ones under frequency stress but not vice versa. During this phase transition, the interaction between the signals controlling each hand (cross talk) is expected to be prominent. To depict the regions of the brain i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology

دوره 125 9  شماره 

صفحات  -

تاریخ انتشار 2014